If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+60x+685=0
a = 1; b = 60; c = +685;
Δ = b2-4ac
Δ = 602-4·1·685
Δ = 860
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{860}=\sqrt{4*215}=\sqrt{4}*\sqrt{215}=2\sqrt{215}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-2\sqrt{215}}{2*1}=\frac{-60-2\sqrt{215}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+2\sqrt{215}}{2*1}=\frac{-60+2\sqrt{215}}{2} $
| (8x+-7)=2 | | 11/4+y=3 | | 1,5+x=-7,5 | | 2x+4=6x7 | | 2x+48=58 | | (b=2)(b-1)=0 | | 55x/5=11x+2x-6 | | 9x-9×2x=-27 | | 9x+6=30-3x | | 3+2(x+4)=13 | | z=99z44 | | 6(p-8)=30 | | y-56=270 | | 13+a=76 | | 2^(2x+1)-33*2^(x-1)+4=0. | | 4xX=30 | | 932=m+439 | | r-3=57 | | 2n²=18 | | 8x2+31x+21=0 | | 20=5*s-3 | | 4*r+2=24 | | 1/2*n+1=8 | | 18x^2-45-50=0 | | 3/5x+7=8+0.6x | | 13x^2-13x+6=0 | | 4*l-6=16 | | 8y-10=20+3 | | 5*x+2=45 | | 3*j-1=21 | | 13=-2m-5 | | 2*i+1=18 |